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Introduction 
 The typical control systems course relies on 
simulation tools to demonstrate the concepts 
presented in the lecture.  While simulations 
are useful for visualizing the theory, only a 
hardware-based experiment can demonstrate 
how the theory translates to the real world. 
   During the Fall Semester 2000, the ENTC 
462 class at Texas A&M performed an 
experiment to test the capabilities of a 
classic PID control system on a plant 
modeled by a second order equation using a 
digital controller operating in the discrete 
time domain.   

Figure 1 - Classic Closed-Loop Control 
 
This experiment brought controls into the 
physical realm so that students could see a 
PID control system manipulate the 
performance of a real-world device.  The 
plant chosen for the project was a DC motor 
coupled to an identical DC motor to create a 
motor/generator system that would provide 
an analog voltage output for any given 
analog voltage input.  An additional optical 
sensor was added for purposes of 
determining the RPM of the motor given a 
known input. 
 

 
Figure 2 - DC Motor/Generator (Plant) 

     The controller had to support two inputs 
(the driving signal and the feedback signal) 
and one output (the motor control signal) 
and had to be reprogrammable. There were  
many different devices used by the class, but 
this paper will focus on two particular 
implementations—an MC68HC12 
microcontroller by Motorola and a National 
Instruments implementation using 
LabVIEW 5.1 and a PCI-1200 data 
acquisition (DAQ) card.   
     To aid in the solving of the complex 
systems of equations, various software 
packages were used including one that was 
developed internally. The primary software 
program used throughout the project was a 
"real-time" simulation tool written by Justin 
Ewing, an undergraduate student.  The 
program was designed using National 
Instrument's LabVIEW Virtual Instrument 
and was capable of dynamically plotting the 
output of a system for different PID 
constants.  In addition to the program 
written by Mr. Ewing, various other 
simulation and computational programs 
were used, including Matlab, Simulink, 
Maple, Curve Expert 1.4, and other 
LabVIEW tools to help find fourth order 
roots and solve for coefficients in 
simultaneous equations. 
 



Characterization of the Plant 
     To achieve tight control of the plant (in 
this case a motor), there must be a 
characteristic equation that describes the 
operation of the motor over its range of 
inputs.   
     Because the motor is a mechanical 
device, it was assumed that it was 
overdamped and more importantly, that it 
could be represented by a second order 
equation.  A second order model is sufficient 
because it adequately models both the rising 
and steady state characteristics of the motor 
response, and it is a comfortable medium 
between trivial and tedious calculations.  
Since the intent of the class was to learn 
how to implement a PID control system, it 
was decided that modeling the plant with an 
equation higher than second order would 
detract from the important principles and 
cause students to become overwhelmed with 
the calculations. 
     Two types of data were collected from 
the plant, the first was the representation 
between input voltage and output speed of 
the motor. The second was the motor’s 
response to a step input.  Capturing this data 
was straightforward using a simple 
LabVIEW data acquisition program to read 
the given input and resulting output for a 
given set of test input amplitudes.  The 
following figure describes the RPM output 
of the motor for increasing positive input 
voltages.   This relationship turned out to be 
linear which allowed a generic characteristic 
equation to be developed—one that was not 
dependent upon input values.  
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Figure 3 - Linearity between Input and Output 

 
     The second data set collected was the 
motor’s response to a step input.  Two 
different methods were used to acquire the 
data from the motor’s response to a step 
input.  One group used LabVIEW to apply 
the step input and then measure the resulting 
output.  The other group used LabVIEW 
strictly as a data collection device and used a 
manual push-button switch to apply the 
input step.  The logic used to support the use 
of the switch was that there would be an 
associated latency induced by the DAQ card 
having to perform multiple functions at the 
same time.  After comparing both sets of 
data, it was found that  any delay caused by 
the sampling rate of the DAQ card was 
insignificant and did not produce any 
irregularities in the data.  The following 
diagram details the input step and 
corresponding motor characteristic response. 
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Figure 4 - Input Setup vs. Motor Output 
 
     Notice that it takes about 45 ms for the 
motor to reach its steady state value.  During 
the initial characterization of the motor, the 
generator actually produced an output 
voltage greater than the motor input.  To 
understand why this happened, one must 
examine the laboratory setup in more detail.  
Because the motor required a high current, it 
could not be driven directly from the DAQ 
card.  Therefore, the voltage output of the 
DAQ card was buffered by a voltage-to-
current converter that supplied the motor 
through 60A power supplies.  This 
conversion introduced an error into the 
system, and as a result, the motors were 



driven with a slightly higher voltage than 
was provided by the DAQ card.  Fortunately 
this error did not affect the final PID 
experiment. 
     The data was collected at a rate of one 
sample every millisecond until the motor 
reached its steady state output value plus 
about 20ms to ensure that the motor had 
settled—about 65 ms.  The resulting first 
order exponential expression that describes 
the characteristic response of the motor was 
derived using Curve Expert 1.34, a curve 
fitting program.  The resulting first order 
equation was:  
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Again, notice that when given a +5V step 
input the generator output actually is greater 
than 5V, this is due to the power conversion 
error mentioned previously. 
     The first order equation can model the 
rising response of the motor, but to model 
the steady state response of the system, a 
second order polynomial fit was used.  
Instead of performing this curve fit, a 
different method was used.  The 
“LabVIEW_PID” program was used to 
approximate the open-loop second order 
equation and hence, one could determine the 
damping ratio,ξn and the undamped natural 
frequency, ωn to described the motor’s 
response to a step input.  All approximations 
were performed visually by comparing a 
Microsoft Excel plot of the actual data and 
modifying the LabVIEW_PID ξn and ωn 
values until the response curves “appeared” 
the same.   
 

 
Figure 5 - Plot of Second Order Equation 

     Using this visual method, the authors 
arrived at the following second order 
characteristic equation for describing the 
motor’s response to a +5V step input: 
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Discrete PID Control 

     The project was then segmented into 
three distinct sections, each implementing a 
different method of motor control:  
Proportional-Integral, Proportional-
Derivative, and Proportional-Integral-
Derivative.  These are described below with 
both the continuous equation as a reference, 
along with the implemented discrete 
equation used by the controller to determine 
the necessary control signals.  Two separate 
implementations of the controller were used; 
one was based on a LabVIEW data 
acquisition system while the second was 
based on a MC68HC12 microcontroller. 

  PI Control  
     Theoretically, Proportional-Integral (PI) 
control of the motor would provide a system 
that is more responsive.  Unfortunately, this 
is often too responsive and thus produces 
overshoot and ringing in the final output.  
The following equations describe the 
continuous transfer function and discrete 
control equations implemented for PI 
control of the motor. 
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To define the terms in the above equation: 
‘u’ is the output of the system to the plant, 
‘e‘ is the error signal input to the controller, 
T is the sampling time of the system, k is the 
present value and k-1 is the previous value. 
     The following figure is the output of the 
motor given a 3V step with constant values 
for Kp and varying values of Ki.  
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Figure 6 - Proportional-Integral Control 
 
Notice that the system becomes more 
responsive with increasing values of Ki. 
 

  PD Control 
     Using just Proportional-Derivative (PD) 
control in the model theoretically provides 
for a system that settles out faster than with 
just Proportional or Proportional-Integral 
control. The following equations describe 
the continuous transfer function and discrete 
control equations implemented for PD 
control of the motor. 
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The following is a plot of the motor’s 
response to an input step of 2V and using 
constant Kp with varying Kd. 
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Figure 7 - Proportional-Derivative Control 
 
Notice that for increasing values of Kd, the 
system settled out quicker.  Only very small 
values of Kd were possible due to the 
extreme effects of Derivative control—it 
only takes a small amount of Kd to provide a 
large effect on the output. 
 

  PID Control 
     Finally, PID control was implemented.  
As expected, PID control provides for the 
tightest closed-loop control as compared to 
any other combination.  The following 
equations are the continuous transfer 
function and the discrete control equations 
implemented. 
 

KisKpsKs

KsKsK

sR
sY

d

ipd

40000)4000040000()40000550(
)(40000

)(
)(

23

2

+++++

++
=

 
 

121
2

−−− +





+





+−





++= k

d
kp

d
kip

d
kk u

T
K

eK
T
K

eTKK
T
K

eu  

 

     Up to this point in the project, the data 
from the microcontroller and LabVIEW 
implementations were consistent with each 
other and provided about the same quality 
results.  In the final implementation of the 
PID controller, the two groups achieved 
quite different results.  The final data from 
the microcontroller group was not what they 
had expected. Although it did maintain tight 



control of the motor, it did not succeed in 
increasing the response of the motor.  The 
constant values that provided the following 
best response plot are: Kp=2.5, Ki=80 and 
Kd=0.001.  
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Figure 8 - MC68HC12 PID Output 
 
   The LabVIEW implementation, on the 
other hand, was more successful in 
achieving the project goals.  The following 
is a plot of the LabVIEW results.  The best 
constant values for this plot were: Kp=7.5, 
Ki=200 and Kd=0.001. 
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Figure 8 - LabVIEW PID Output 
 
     Notice the increased response and tighter 
control with the LabVIEW implementation 
compared to the MCHC12. 
 
Intelligent Controllers  
     As mentioned previously, the authors 
chose very different controllers for this 
project—one chose the Motorola 
MC68HC12 and the other used LabVIEW 
5.1 in conjunction with a PCI-1200 DAQ 
card.  Each implementation had both 
advantages and disadvantages as compared 
to the other. 

  Disadvantages 
     The HC12 microcontroller offered a few 
limitations not noticed in the LabVIEW 
version.  Possibly the biggest limitation was 
the fact that it could only be programmed by 
a low to mid level programming language 
(Assembly, C).  Although it reduced the 
total amount of overhead in the program, it 
increased the possibility for programming 
errors.  The group that used a LabVIEW-
based system found very little difficulty in 
getting correct results from the outset.  
Possibly the biggest limitation of the HC12 
was its processing power.  The HC12 can 
only operate with 16-bit values and as a 
result the operations would often ‘rail’ out 
and provide erroneous data as it cycled 
between the high and low rails of the 
system.  This was due to the extreme 
sensitivity of the control system to 
numerical error.  LabVIEW, on the other 
hand, has the ability to operate with 32-bit 
values and thus can provide a much better 
result and eliminate the ‘railing’ observed 
with the HC12.  Another large difficulty 
experienced by both groups was the 
sampling time.  Although the HC12 had less 
overhead, it also had less processing power 
so the sampling rate, as measured by 
toggling an external port bit, was about 
1.2ms.  While the groups using the HC12 
microcontroller found that the sampling time 
could be reduced to 0.2ms if the floating 
point calculations were eliminated, they also 
found that the decrease in accuracy was 
unacceptable.  Surprisingly, the LabVIEW 
implementation achieved a 1.3ms sampling 
rate even with the overhead found in such a 
high-level programming environment.  This 
rate was sufficient to implement the 
controller. 

  Advantages 
     It appears that most of the advantages are 
with the LabVIEW implementation, but 
there were a few that remained with the 



HC12.  One advantage for the HC12 was 
price.  The HC12 group used an evaluation 
board that cost $150.  They also used a copy 
of the Introl C Compiler and a basic 
personal computer (PC) with a serial port.   
Another advantage of the microcontroller 
system is that it is similar to the type of 
system found in industry.   
   The LabVIEW setup requires a moderate 
speed Pentium computer with a PCI-1200 
DAQ card and LabVIEW software license.  
Even if the cost were not an issue, setting up 
a PC to run the PID control system would 
consume too much space for most industrial 
applications.   
     However, the LabVIEW implementation 
has extraordinary benefits for design, 
research, and educational purposes.  First, 
the actual program can be done very quickly, 
and it is easy to modify.  Second, the ability 
to add probes and graphs at different points 
in the program allows the user to take a 
deeper look into what is actually happening 
in the control system.  Finally, tuning the 
PID control system is as easy as clicking the 
mouse.  Conversely, tuning the PID system 
using a microcontroller requires editing the 
source code, recompiling, and re-
downloading the program to the 
microcontroller.  This can quickly become a 
tedious task. 
 

Conclusions 
     This project proved to be an exciting 
learning experience for each member of the 
class as well as for the instructor.  It taught 
the students how to characterize a plant 
using a second order model and the 
importance of using discrete time domain 
calculations in a controller-based 
environment.  It also allowed the students to 
experimentally observe the effects of 
varying the PID coefficients.  Finally, this 
project not only showed that it is possible to 
provide reliable, closed-loop control of a 

second-order plant, but that PID control 
systems can actually improve the 
performance of a plant.  In order to make 
this project viable over several semesters, a 
new plant system that has a variable load is 
being developed.  In this manner, the system 
being controlled can be changed from 
semester to semester. 
 
 
 
 
 
 


