
 1

Development of a Discrete PID Control Laboratory for Undergraduate EET
Curriculum: Modeling, Analytical, and Empirical Data Collection Tool

N. Moehring, C. Vogel, J. Porter, J. Morgan

Electronics Engineering Technology Program, Texas A&M University

Introduction
 The typical control systems course relies on
simulation tools to demonstrate the concepts
presented in the lecture. While simulations
are useful for visualizing the theory, only a
hardware-based experiment can demonstrate
how the theory translates to the real world.
 During the Fall Semester 2000, the ENTC
462 class at Texas A&M performed an
experiment to test the capabilities of a
classic PID control system on a plant
modeled by a second order equation using a
digital controller operating in the discrete
time domain.

Figure 1 - Classic Closed-Loop Control

This experiment brought controls into the
physical realm so that students could see a
PID control system manipulate the
performance of a real-world device. The
plant chosen for the project was a DC motor
coupled to an identical DC motor to create a
motor/generator system that would provide
an analog voltage output for any given
analog voltage input. An additional optical
sensor was added for purposes of
determining the RPM of the motor given a
known input.

Figure 2 - DC Motor/Generator (Plant)

 The controller had to support two inputs
(the driving signal and the feedback signal)
and one output (the motor control signal)
and had to be reprogrammable. There were
many different devices used by the class, but
this paper will focus on two particular
implementations—an MC68HC12
microcontroller by Motorola and a National
Instruments implementation using
LabVIEW 5.1 and a PCI-1200 data
acquisition (DAQ) card.
 To aid in the solving of the complex
systems of equations, various software
packages were used including one that was
developed internally. The primary software
program used throughout the project was a
"real-time" simulation tool written by Justin
Ewing, an undergraduate student. The
program was designed using National
Instrument's LabVIEW Virtual Instrument
and was capable of dynamically plotting the
output of a system for different PID
constants. In addition to the program
written by Mr. Ewing, various other
simulation and computational programs
were used, including Matlab, Simulink,
Maple, Curve Expert 1.4, and other
LabVIEW tools to help find fourth order
roots and solve for coefficients in
simultaneous equations.

Characterization of the Plant
 To achieve tight control of the plant (in
this case a motor), there must be a
characteristic equation that describes the
operation of the motor over its range of
inputs.
 Because the motor is a mechanical
device, it was assumed that it was
overdamped and more importantly, that it
could be represented by a second order
equation. A second order model is sufficient
because it adequately models both the rising
and steady state characteristics of the motor
response, and it is a comfortable medium
between trivial and tedious calculations.
Since the intent of the class was to learn
how to implement a PID control system, it
was decided that modeling the plant with an
equation higher than second order would
detract from the important principles and
cause students to become overwhelmed with
the calculations.
 Two types of data were collected from
the plant, the first was the representation
between input voltage and output speed of
the motor. The second was the motor’s
response to a step input. Capturing this data
was straightforward using a simple
LabVIEW data acquisition program to read
the given input and resulting output for a
given set of test input amplitudes. The
following figure describes the RPM output
of the motor for increasing positive input
voltages. This relationship turned out to be
linear which allowed a generic characteristic
equation to be developed—one that was not
dependent upon input values.

0

50

100

150

200

250

0 1 2 3 4 5 6

Input Voltage (V)

R
P

M
's

 o
f
M

o
to

r

Figure 3 - Linearity between Input and Output

 The second data set collected was the
motor’s response to a step input. Two
different methods were used to acquire the
data from the motor’s response to a step
input. One group used LabVIEW to apply
the step input and then measure the resulting
output. The other group used LabVIEW
strictly as a data collection device and used a
manual push-button switch to apply the
input step. The logic used to support the use
of the switch was that there would be an
associated latency induced by the DAQ card
having to perform multiple functions at the
same time. After comparing both sets of
data, it was found that any delay caused by
the sampling rate of the DAQ card was
insignificant and did not produce any
irregularities in the data. The following
diagram details the input step and
corresponding motor characteristic response.

0

1

2

3

4

5

6

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Time (sec)

Input Output

Figure 4 - Input Setup vs. Motor Output

 Notice that it takes about 45 ms for the
motor to reach its steady state value. During
the initial characterization of the motor, the
generator actually produced an output
voltage greater than the motor input. To
understand why this happened, one must
examine the laboratory setup in more detail.
Because the motor required a high current, it
could not be driven directly from the DAQ
card. Therefore, the voltage output of the
DAQ card was buffered by a voltage-to-
current converter that supplied the motor
through 60A power supplies. This
conversion introduced an error into the
system, and as a result, the motors were

driven with a slightly higher voltage than
was provided by the DAQ card. Fortunately
this error did not affect the final PID
experiment.
 The data was collected at a rate of one
sample every millisecond until the motor
reached its steady state output value plus
about 20ms to ensure that the motor had
settled—about 65 ms. The resulting first
order exponential expression that describes
the characteristic response of the motor was
derived using Curve Expert 1.34, a curve
fitting program. The resulting first order
equation was:

)96.0(45.5 79.75 t
out eV −−=

Again, notice that when given a +5V step
input the generator output actually is greater
than 5V, this is due to the power conversion
error mentioned previously.
 The first order equation can model the
rising response of the motor, but to model
the steady state response of the system, a
second order polynomial fit was used.
Instead of performing this curve fit, a
different method was used. The
“LabVIEW_PID” program was used to
approximate the open-loop second order
equation and hence, one could determine the
damping ratio,ξn and the undamped natural
frequency, ωn to described the motor’s
response to a step input. All approximations
were performed visually by comparing a
Microsoft Excel plot of the actual data and
modifying the LabVIEW_PID ξn and ωn
values until the response curves “appeared”
the same.

Figure 5 - Plot of Second Order Equation

 Using this visual method, the authors
arrived at the following second order
characteristic equation for describing the
motor’s response to a +5V step input:

40000550
40000

)(2 ++
=

ss
sY

Discrete PID Control

 The project was then segmented into
three distinct sections, each implementing a
different method of motor control:
Proportional-Integral, Proportional-
Derivative, and Proportional-Integral-
Derivative. These are described below with
both the continuous equation as a reference,
along with the implemented discrete
equation used by the controller to determine
the necessary control signals. Two separate
implementations of the controller were used;
one was based on a LabVIEW data
acquisition system while the second was
based on a MC68HC12 microcontroller.

 PI Control
 Theoretically, Proportional-Integral (PI)
control of the motor would provide a system
that is more responsive. Unfortunately, this
is often too responsive and thus produces
overshoot and ringing in the final output.
The following equations describe the
continuous transfer function and discrete
control equations implemented for PI
control of the motor.

ip

pi

KsKss

sKK

sR
sY

40000)1(40000550

)(40000

)(
)(

22 ++++

+
=

110 *))*((* −− +−+= kpkpikk ukekTkeu

To define the terms in the above equation:
‘u’ is the output of the system to the plant,
‘e‘ is the error signal input to the controller,
T is the sampling time of the system, k is the
present value and k-1 is the previous value.
 The following figure is the output of the
motor given a 3V step with constant values
for Kp and varying values of Ki.

0

1

2

3

4

5

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Time (sec)

O
u
tp

u
t V

o
lta

g
e
 (
V

)

Ki=10 Ki=100 Ki=200 Ki=500

Figure 6 - Proportional-Integral Control

Notice that the system becomes more
responsive with increasing values of Ki.

 PD Control
 Using just Proportional-Derivative (PD)
control in the model theoretically provides
for a system that settles out faster than with
just Proportional or Proportional-Integral
control. The following equations describe
the continuous transfer function and discrete
control equations implemented for PD
control of the motor.

)4200040000()42000550(
)(42000

)(
)(

2

pd

pd

KsKs
KsK

sR
sY

++++
+

=

1-kd2-k

pd1-kpdkk0

u+/T)(k*e+

)k +/T)((2k*e-)k+/T)((k*e=u

The following is a plot of the motor’s
response to an input step of 2V and using
constant Kp with varying Kd.

0

0.5

1

1.5

2

2.5

3

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Time (sec)

O
u
tp

u
t V

o
lta

g
e
 (
V

)

Kd=0.00001 Kd=0.0001 Kd=0.001

Figure 7 - Proportional-Derivative Control

Notice that for increasing values of Kd, the
system settled out quicker. Only very small
values of Kd were possible due to the
extreme effects of Derivative control—it
only takes a small amount of Kd to provide a
large effect on the output.

 PID Control
 Finally, PID control was implemented.
As expected, PID control provides for the
tightest closed-loop control as compared to
any other combination. The following
equations are the continuous transfer
function and the discrete control equations
implemented.

KisKpsKs

KsKsK

sR
sY

d

ipd

40000)4000040000()40000550(
)(40000

)(
)(

23

2

+++++

++
=

121
2

−−− +

+

+−

++= k

d
kp

d
kip

d
kk u

T
K

eK
T
K

eTKK
T
K

eu

 Up to this point in the project, the data
from the microcontroller and LabVIEW
implementations were consistent with each
other and provided about the same quality
results. In the final implementation of the
PID controller, the two groups achieved
quite different results. The final data from
the microcontroller group was not what they
had expected. Although it did maintain tight

control of the motor, it did not succeed in
increasing the response of the motor. The
constant values that provided the following
best response plot are: Kp=2.5, Ki=80 and
Kd=0.001.

0

0.5

1

1.5

2

2.5

3

3.5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time (sec)

O
u
tp

u
t V

o
lts

 (
V

)

Figure 8 - MC68HC12 PID Output

 The LabVIEW implementation, on the
other hand, was more successful in
achieving the project goals. The following
is a plot of the LabVIEW results. The best
constant values for this plot were: Kp=7.5,
Ki=200 and Kd=0.001.

0

0.5

1

1.5

2

2.5

3

3.5

0 0.05 0.1 0.15 0.2

Time (sec)

Figure 8 - LabVIEW PID Output

 Notice the increased response and tighter
control with the LabVIEW implementation
compared to the MCHC12.

Intelligent Controllers
 As mentioned previously, the authors
chose very different controllers for this
project—one chose the Motorola
MC68HC12 and the other used LabVIEW
5.1 in conjunction with a PCI-1200 DAQ
card. Each implementation had both
advantages and disadvantages as compared
to the other.

 Disadvantages
 The HC12 microcontroller offered a few
limitations not noticed in the LabVIEW
version. Possibly the biggest limitation was
the fact that it could only be programmed by
a low to mid level programming language
(Assembly, C). Although it reduced the
total amount of overhead in the program, it
increased the possibility for programming
errors. The group that used a LabVIEW-
based system found very little difficulty in
getting correct results from the outset.
Possibly the biggest limitation of the HC12
was its processing power. The HC12 can
only operate with 16-bit values and as a
result the operations would often ‘rail’ out
and provide erroneous data as it cycled
between the high and low rails of the
system. This was due to the extreme
sensitivity of the control system to
numerical error. LabVIEW, on the other
hand, has the ability to operate with 32-bit
values and thus can provide a much better
result and eliminate the ‘railing’ observed
with the HC12. Another large difficulty
experienced by both groups was the
sampling time. Although the HC12 had less
overhead, it also had less processing power
so the sampling rate, as measured by
toggling an external port bit, was about
1.2ms. While the groups using the HC12
microcontroller found that the sampling time
could be reduced to 0.2ms if the floating
point calculations were eliminated, they also
found that the decrease in accuracy was
unacceptable. Surprisingly, the LabVIEW
implementation achieved a 1.3ms sampling
rate even with the overhead found in such a
high-level programming environment. This
rate was sufficient to implement the
controller.

 Advantages
 It appears that most of the advantages are
with the LabVIEW implementation, but
there were a few that remained with the

HC12. One advantage for the HC12 was
price. The HC12 group used an evaluation
board that cost $150. They also used a copy
of the Introl C Compiler and a basic
personal computer (PC) with a serial port.
Another advantage of the microcontroller
system is that it is similar to the type of
system found in industry.
 The LabVIEW setup requires a moderate
speed Pentium computer with a PCI-1200
DAQ card and LabVIEW software license.
Even if the cost were not an issue, setting up
a PC to run the PID control system would
consume too much space for most industrial
applications.
 However, the LabVIEW implementation
has extraordinary benefits for design,
research, and educational purposes. First,
the actual program can be done very quickly,
and it is easy to modify. Second, the ability
to add probes and graphs at different points
in the program allows the user to take a
deeper look into what is actually happening
in the control system. Finally, tuning the
PID control system is as easy as clicking the
mouse. Conversely, tuning the PID system
using a microcontroller requires editing the
source code, recompiling, and re-
downloading the program to the
microcontroller. This can quickly become a
tedious task.

Conclusions
 This project proved to be an exciting
learning experience for each member of the
class as well as for the instructor. It taught
the students how to characterize a plant
using a second order model and the
importance of using discrete time domain
calculations in a controller-based
environment. It also allowed the students to
experimentally observe the effects of
varying the PID coefficients. Finally, this
project not only showed that it is possible to
provide reliable, closed-loop control of a

second-order plant, but that PID control
systems can actually improve the
performance of a plant. In order to make
this project viable over several semesters, a
new plant system that has a variable load is
being developed. In this manner, the system
being controlled can be changed from
semester to semester.

