
LabVIEW Exceptions

Error handling is a difficult subject in any language, not just LabVIEW. If NI

is considering enhancing the error handling features in LabVIEW, why not

1

is considering enhancing the error handling features in LabVIEW, why not

take a look at what other languages provide in terms of error handling

features and techniques and how they might translate into LabVIEW.

LabVIEW Exceptions

It is right and appropriate for LabVIEW to focus on wires and terminals in the

dataflow paradigm, but could there be an event-driven alternative or

2

dataflow paradigm, but could there be an event-driven alternative or

complement to error handling?

LabVIEW Exceptions

It is a reasonable comparison to say that exceptions are like events, but for

errors instead of data. It took several years for the Event Structure to

3

errors instead of data. It took several years for the Event Structure to

become popular in LabVIEW, but now it has become the defacto method of

responding to user activity on the front panel, rather than polling control

terminals. Likewise, the current NEC system of error handling in LabVIEW

is kind of like a polling architecture, polling error cluster outputs and leaving

the user responsible for ensuring that the error gets from the source to an

error handler. Exceptions, on the other hand, guarantee delivery of the error

from the source to the destination without placing that responsibility on the

user.

LabVIEW Exceptions

It would be very natural to desire that the default behavior of an unhandled

exception in a deployed application to log silently to a debug file, but during

4

exception in a deployed application to log silently to a debug file, but during

development all unhandled exceptions should be brought to the testers’

attention.

LabVIEW Exceptions

If this is the only concrete thing that comes out of this presentation, I’d be a

happy man.happy man.

Automatic Error Handler VI would probably be required to have a particular

connector pane. This NI-defined connector pane should probably contain an

LVException (dynamic dispatch?) input terminal, as will be described later.

5

LabVIEW Exceptions

6

LabVIEW Exceptions

In all examples, primitives represent any kind of node, primitives or subVIs.

7

LabVIEW Exceptions

Handling the error after each node localizes the error response and is most

representative of the behavior achieved with the use of exceptions.

8

representative of the behavior achieved with the use of exceptions.

LabVIEW Exceptions

•Previous error cannot disable execution of subsequent nodes if they do not

have error inputs.have error inputs.

•Even if they have error inputs, no guarantee they have the “do nothing if

error” case structure. I have found that removing the Error/No Error case

structure from low level subVIs can greatly improve performance.

•Incoming errors can cause logic errors in the current subVI, causing new

errors to be written to the error cluster that actually mask previous errors.

9

LabVIEW Exceptions

When relying on wires to carry error information, there is no guarantee that

every error will reach an error handler. Some may be overwritten or

10

every error will reach an error handler. Some may be overwritten or

dropped.

Joe Gerhardstein mentioned during his presentation that it was a long time

before he even noticed the output error clusters on the In Place Element

structure when dereferencing a Data Value Reference. In this case, those

errors could have been missed, even though he normally would wants to

wire all error clusters. It was an unintentional omission that no longer

guaranteed delivery of the error to an error handler (assuming AEH is

disabled).

LabVIEW Exceptions

Exception input is also available in the finally frame just in case the finally

frame wants to use it. For example, one of the data members of the frame wants to use it. For example, one of the data members of the

Exception_IO_File class could be a file reference. Thus, if the File Open

passed but the File Read closed, the code within the primitive would be

possible for populating the file refnum into the Exception object before

throwing the exception. The finally frame could use this refnum to close the

file properly, perhaps by calling a Close method or calling an accessor

method to return the file ref.

11

LabVIEW Exceptions

Because the contents of the try block represent an action that is intended to
be atomic, meaning either the entire action passed or the entire action failed, be atomic, meaning either the entire action passed or the entire action failed,
it is most likely the actions in that try block would be serialized already. In
other words, if actions are being done in parallel, how closely related are
they? They probably shouldn’t be in the same TryCatch structure. Plus, the
serialization of clump execution would only happen within the try frame of the
TryCatch structure. There’s nothing to prevent you from putting TryCatch
structures side by side to allow parallelism.

To implement a retry mechanism at a given failure point, the exception
handler frame and finally frame would need to “roll back” the application to
the state prior to the failed trail block. Then, outside the TryCatch structure,
a while loop would retry the entire operation. This means any intermediate
data such as the file reference opened by the Open File primitive would need
to be stored either in the Exceptions object passed to the exception frame
OR in a sequence local to make that data available to subsequent frame(s),
in this case, closing the file in the exception frame to roll back application
state.

Another possibility may be to use the Event Structure to catch Exceptions
thrown by the throw exception primitive (just like a User Event) or internal to
a LabVIEW primitive. However, this doesn’t address the finally frame, and I
think it muddies the purpose of the Event Structure.

12

LabVIEW Exceptions

13

LabVIEW Exceptions

14

LabVIEW Exceptions

15

LabVIEW Exceptions

16

LabVIEW Exceptions

This example of exception hierarchy shows:

1. LV Root Object

1. LVException

1. LVException_IO

1. LVException_IO_File

1. LVException_IO_File_FileNotFoud

2. LVException_Comm

2. LVException_Memory

17

LabVIEW Exceptions

Or array of object icons instead?

18

LabVIEW Exceptions

19

LabVIEW Exceptions

20

LabVIEW Exceptions

21

LabVIEW Exceptions

I often use subVIs that have unwired error output terminals, particularly on

primitives such as Format Into String, a frequently omitted primitive. I’d like primitives such as Format Into String, a frequently omitted primitive. I’d like

my VI to be able to catch these exceptions (either through the AEH or

TryCatch Structure) without modifying the subVI for fear of changing the

behavior of existing callers.

22

LabVIEW Exceptions

If we want LabVIEW to gain popularity in the Software

Engineering/Computer Science engineering/academic worlds as a general Engineering/Computer Science engineering/academic worlds as a general

purpose programming language, LabVIEW needs to provide some of the

tools commonly found in other languages. Remove all barriers possible for a

hardcore textual programmer to consider adopting LabVIEW. By broadening

the developer base, NI would also broaden it’s sales potential.

23

LabVIEW Exceptions

24

