
1

2

SpaceX regularly challenges LabVIEW in terms of functionality, performance, and scalability.

Many of the patches released for LabVIEW 2013 and 2015 have been in direct support of

SpaceX. Thank you to LabVIEW R&D for their support.

3

4

5

This presentation will focus on managing the risk associated with LabVIEW performance

and touch on issues to help reduce risk of failures through real-time metrics analysis. An

entirely separate presentation could be written to discuss managing the risks associated

with some of the problems listed on the previous slide.

6

Throughput, latency, jitter

7

This is probably the most important slide in this presentation! This is where we’ve had

significant struggles and wins.

8

TagBus is a great way to accommodate preallocation and minimize data copies and

coercions

This might be a 2013 bug, or it might be a function of the datatype or dynamic dispatching.

The In Place Algorithm will likely recognize that the output can reuse the input array

memory space, but semantically this is not expressed or promised by this traditional use of

auto indexing inputs and outputs. The diagram on the right, although less concise, does

the express the desired behavior semantically.

Note that the size of the output arrays will be different with the shown implementation,

which basically assumes that if an error occurs the application will be shutting down, so the

change in array size is not significant. You would need to remove the conditional terminal

from the loop on the left in order to guarantee the inputs and outputs match length.

9

Static Dispatch is faster than Dynamic Dispatch by single digit microseconds. If you’re

writing code to avoid dynamic dispatch, consider the overhead of that code adds to the

Static Dispatch time. It’s possible that dynamic dispatch is now fast enough that this trick is

no longer required, but in LV2015 I do not believe that to be the case.

Dynamic Dispatch defaults to Shared Clone Reentrancy. Non-reentrant is an option for

Dynamic Dispatch (excludes recursion), but Preallocate Reentrancy is not. Shared

Reentrancy can introduce jitter in an application.

To More Specific can be a potentially expensive operation but in this case it is not because

it is known thanks to the case structure that the object is of the requested type, and the

types are only 1 generation apart from each other. No search down the ancestry required

to find the matching type.

10

Although unused, error terminals are required on this Read Accessor in order to make the

accessor callable in a property node.

Consider modifying the Read Accessor template VI in the resource folder in order to change

the default construction of this VI.

11

Available since 2013

12

We haven’t upgraded to LV2016 or 2017 yet, so I haven’t experimented with the new IPE

nodes yet. Allen Smith suggests this will likely be more beneficial if you’re using nested

attributes.

13

Queues amortize their growth by allocating memory in increasing-sized blocks. Therefore

the next enqueue operation might require a memory allocation to make room for the new

element. Preallocating the queue prevents jitter because no memory allocation will occur

during execution.

14

15

16

Make sure all dependencies are reentrant to ensure execution does not synchronize across

Execution Systems.

17

Not all data is created equal. Prioritize your data by keeping it separated from less

important data.

18

19

Naming convention might include things like

<source>.<measurement>_<value>_<valueunit>_<rateunit>

20

21

22

23

(Animation is covering diagrams here)

24

Slide 24

NM1 Nate Moehring, 9/17/2017

25

I’ve experienced too many problems with run-time crashes using Parallel For Loops to make

them desirable to you. I’ve also seen Parallel For Loops run slower than just sequentially

running through all of the elements, even if it didn’t crash

Color Bloom technique is the idea that when a user is scrolling through a table or a listbox,

his eye is probably on ~ the middle of the table. Therefore, when coloring the rows or text

of that table/listbox, color bloom is a technique coined by TurboPhil that describes coloring

the middle row first, then alternating above and below rows, moving out towards the top

and bottom.

26

So is LabVIEW a Tortoise or a Hare?

27

