Electronic Tongue Based on Infrared Absorption

CPSC 483: Spring 2005
Chris Freytag, Rebecca Moehring, James Smith

Project Background

Infrared Spectroscopy

- Fourier Transform near-IR Systems
 - Currently used in Chemistry Labs
 - Expensive

Needs Statement

• FTIR spectrometers used in today's chemistry labs cost between \$28,000 and \$55,000, limiting their wide-spread use.

Goals and Objectives

• Goal:

Develop a low-cost alternative to modern FTIR spectrometers that can identify common liquids.

• Objectives:

- Identify common alcohols accurately
- Design should minimize outside interference
- Stay within budget (\$500)
- Minimize manufacturing cost
- Safe and simple
- Produces a result in an acceptable amount of time

Literature Review

DEXTER RESEARCH CENTER, INC.

Design

- Hardware
 - Infrared Emitter
 - Salt Plates (AgCl)
 - Thermopile Sensors
 - Filters for functional groups
 - **–** С-Н
 - H-O
 - Amplifiers

Design

- Software
 - National Instruments USB DAQ card
 - Database of liquids and functional groups
 - Graphical Interface
 - Graphs and/or list of identified functional groups
 - In LabView these are called Virtual Interfaces (VIs)

System Design

Design constraints and feasibility

- limit our identification to liquids that contain
 C-H and O-H bonds
- operating temperature of our device (between freezing and boiling of the substances)
- the number of frequencies we can monitor

Evaluation of alternative solutions

- Linear Variable Filter
- Rotary/Film strip Filter
- NaCl/BaFl₂/other Salt Plates
- Types of Flow Cells

LabVIEW Front Panel

Design Validation

- Provide our product with samples of compounds and verify that it identifies them correctly
 - 1. Pure Compounds
 - 2. Varied concentrations of a specific known compound
 - 3. Mixtures of compounds

Economic Analysis and Budget

Economical viability:

- Our product is extremely marketable low-cost users
- Prototype a design for roughly \$1000.00
- Mass produce it for \$400.00 per unit.

Sustainability:

- All of our parts are manufactured by multiple vendors except for the thermopile.
- Our product will require care and cleaning.
- Ongoing support and additions to the database

Manufacturability:

- The thermopile requires a heat sink to stabilize temperature
- Affected by the amount of water in the ambient air

Economic Analysis and Budget

Item	Quantity	Amount (\$)
Infrared Source	1	\$90.00
4 Channel Thermopile	1	(\$155 – 30%) \$110.00
Filters F3000 – 3 micron FHC1 - 3.43 micron FREF – 4.862 micron - 9.6 micron	4	\$120.00
Silver Chloride Plate Kit	1	\$142.00
Compound samples (rubbing alcohol, hexanol, glycerin, antifreeze, 1- propanol, water)	5	\$50.00
Aluminium box Machined by Chemistry Department	1	\$21.00 / hour
USB Data Acquisition Card	1	\$220.00
Total (does not include USB card)		\$533.00

Project Management and Team Work

- Chris Freytag
 - exposure to infrared sources
 - prior project in lasers
- Rebecca Moehring
 - National Instrument's LabView software
 - Database
- James Smith
 - system design and hardware
 - Aluminum box

Schedule of Tasks

Societal Impact

- Pollution Monitoring
- Agriculture: determining compounds in soils, plant material, fertilizers and foodstuffs
- F in drinking water and other drinks
- Explosives: F, Cl, NO3 in explosive materials and combustion products
- Biomedical Laboratories: Ca, K, Cl in body fluids (blood, plasma, serum, sweat)

Safety and Environmental

- Environmental problems:
 - electrically-energized equipment
 - excessive noise from the IR itself
- Temperature of the infrared source
- The compounds themselves
 - hazardous fumes, gases, and vapors

Results

Results

Demonstration

Question and Answer

Electronic Tongue Based on IR: Final Presentation